Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results
1.

Optogenetic-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane.

blue CRY2/CRY2 HEK293 SH-SY5Y Control of vesicular transport
J Biol Chem, 17 May 2021 DOI: 10.1016/j.jbc.2021.100787 Link to full text
Abstract: The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine (METH) and cocaine (COC), have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with a mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after METH and nomifensine (NOM) treatment. Blue light induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.
Submit a new publication to our database